skip to main content


Search for: All records

Creators/Authors contains: "Khanikaev, Alexander B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Topological phases of matter have been attracting significant attention across diverse fields, from inherently quantum systems to classical photonic and acoustic metamaterials. In photonics, topological phases offer resilience and bring novel opportunities to control light with pseudo-spins. However, topological photonic systems can suffer from limitations, such as breakdown of topological properties due to their symmetry-protected origin and radiative leakage. Here we introduce adiabatic topological photonic interfaces, which help to overcome these issues. We predict and experimentally confirm that topological metasurfaces with slowly varying synthetic gauge fields significantly improve the guiding features of spin-Hall and valley-Hall topological structures commonly used in the design of topological photonic devices. Adiabatic variation in the domain wall profiles leads to the delocalization of topological boundary modes, making them less sensitive to details of the lattice, perceiving the structure as an effectively homogeneous Dirac metasurface. As a result, the modes showcase improved bandgap crossing, longer radiative lifetimes and propagation distances.

     
    more » « less
  2. The Dirac-like dispersion in photonic systems makes it possible to mimic the dispersion of relativistic spin-1/2 particles, which led to the development of the concept of photonic topological insulators. Despite recent demonstrations of various topological photonic phases, the full potential offered by Dirac photonic systems, specifically their ability to emulate the spin degree of freedom—referred to as pseudo-spin—beyond topological boundary modes has remained underexplored. Here we demonstrate that photonic Dirac metasurfaces with smooth one-dimensional trapping gauge potentials serve as effective waveguides with modes carrying pseudo-spin. We show that spatially varying gauge potentials act unevenly on the two pseudo-spins due to their different field distributions, which enables control of guided modes by their spin, a property that is unattainable with conventional optical waveguides. Silicon nanophotonic metasurfaces are used to experimentally confirm the properties of these guided modes and reveal their distinct spin-dependent radiative character; modes of opposite pseudo-spin exhibit disparate radiative lifetimes and couple differently to incident light. The spin-dependent field distributions and radiative lifetimes of their guided modes indicate that photonic Dirac metasurfaces could be used for spin-multiplexing, controlling the characteristics of optical guided modes, and tuning light–matter interactions with photonic pseudo-spins. 
    more » « less
  3. Abstract While vector fields naturally offer additional degrees of freedom for emulating spin, acoustic pressure field is scalar in nature, and it requires engineering of synthetic degrees of freedom by material design. Here we experimentally demonstrate the control of sound waves by using two types of engineered acoustic systems, where synthetic pseudo-spin emerges either as a consequence of the evanescent nature of the field or due to lattice symmetry. First, we show that evanescent sound waves in perforated films possess transverse angular momentum locked to their propagation direction which enables their directional excitation. Second, we demonstrate that lattice symmetries of an acoustic kagome lattice also enable a synthetic transverse pseudo-spin locked to the linear momentum, enabling control of the propagation of modes both in the bulk and along the edges. Our results open a new degree of control of radiation and propagation of acoustic waves thus offering new design approaches for acoustic devices. 
    more » « less
  4. Silicon photonic nanostructures with massive Dirac dispersion offer an opportunity for emulating relativistic trapping of light. 
    more » « less
  5. In this paper, we explore the operation of a nonreciprocal non-Hermitian system consisting of a lossy magneto-optical ring resonator coupled to another ring resonator with gain and loss, and we demonstrate that such a system can exhibit non-reciprocity-based broken parity-time (PT) symmetry and supports one-way exceptional points. The nonreciprocal PT-phase transition is analyzed with the use of both analytical tools based on coupled-mode theory and two-dimensional finite element method simulations. Our calculations show that the response of the system strongly depends on the regime of operation – broken or preserved PT-symmetry. This response is leveraged to show that the system can operate as an optical isolator or a one-way laser with functionality tuned by adjusting loss/gain in the second ring resonator. The proposed system can thus be promising for device applications such as magnetically or even optically switchable non-reciprocal devices and one-way micro-ring lasers.

     
    more » « less
  6. Abstract Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or of a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g., for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  7. The properties of topological systems are inherently tied to their dimensionality. Indeed, higher-dimensional periodic systems exhibit topological phases not shared by their lower-dimensional counterparts. On the other hand, aperiodic arrays in lower-dimensional systems (e.g., the Harper model) have been successfully employed to emulate higher-dimensional physics. This raises a general question on the possibility of extended topological classification in lower dimensions, and whether the topological invariants of higher-dimensional periodic systems may assume a different meaning in their lower-dimensional aperiodic counterparts. Here, we demonstrate that, indeed, for a topological system in higher dimensions one can construct a one-dimensional (1D) deterministic aperiodic counterpart which retains its spectrum and topological characteristics. We consider a four-dimensional (4D) quantized hexadecapole higher-order topological insulator (HOTI) which supports topological corner modes. We apply the Lanczos transformation and map it onto an equivalent deterministic aperiodic 1D array (DAA) emulating 4D HOTI in 1D. We observe topological zero-energy zero-dimensional (0D) states of the DAA—the direct counterparts of corner states in 4D HOTI and the hallmark of the multipole topological phase, which is meaningless in lower dimensions. To explain this paradox, we show that higher-dimension invariant, the multipole polarization, retains its quantization in the DAA, yet changes its meaning by becoming a nonlocal correlator in the 1D system. By introducing nonlocal topological phases of DAAs, our discovery opens a direction in topological physics. It also unveils opportunities to engineer topological states in aperiodic systems and paves the path to application of resonances associates with such states protected by nonlocal symmetries. 
    more » « less
  8. null (Ed.)